Abstract

Organic matter burial in the deep-sea fan sediments is an important component of the long-term carbon cycle. Although there is increasing recognition of the importance of organic matter in deep-sea sediments, a major focus has been on mudstones, commonly interpreted as the background sediments, deposited by pelagic or hemipelagic vertical suspension fallout in low-energy fan environments. Emerging evidence suggests that relatively coarse-grained sediment gravity flow deposits (e.g., turbidites and hybrid event beds) can also store a significant quantity of organic carbon, implying that a wide range of depositional processes can result in the concentration and enrichment of organic matter in submarine fans. However, the role of these processes on carbon burial is still not fully understood. This review aims to discuss the impact of three widely documented deep-sea depositional mechanisms/processes, namely vertical suspension settling, grain-by-grain (incremental aggradation), and the en-masse deposition on distribution, burial, and preservation of organic matter in deep-marine deposits. Organic matter accumulated from slowly settling suspension in mud caps (Te or H5 divisions of turbidites and hybrid beds, respectively) is prone to higher oxidation compared to the carbon buried in sandy components of turbidity currents (Ta-Tc units) and hybrid beds (H2/H3 divisions). The burial of organic matter in sandy parts of the deposits has important implications for understanding the fundamental physical processes that control carbon accumulation and preservation in deep-marine rock record.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call