Abstract

Although many studies have shown that microbial communities play important roles in organic waste composting due to the involvement of specific microbial taxa with metabolic functions, the underlying ecological processes of community assembly and governing factors remain elusive. Thus, a chicken manure composting experiment as a model system of microbially mediated organic waste composting was conducted. Ecological null modeling and metabolic functional prediction combined with electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to quantify assembly processes governing bacterial community composition and functions during composting. The results showed the predominant role of deterministic assembly processes in shifting community compositions both across and within composting stages. Stochastic assembly processes also concomitantly influenced microbial community compositions. Changes in the organic matter (OM) content and its chemical properties and temperature governed bacterial community assembly processes throughout the stages by selecting specific bacterial taxa such as Cardiobacteriales, Bacteroidales, and Lachnospiraceae on day 1, Firmicutes on days 6, 25 and 37, and Sphingobacteriales, Thermoactinomycetaceae, Actinobacteria, and Novibacillus on day 45. These taxa ultimately influenced community functions such as environmental information processing, carbohydrate and amino acid metabolism, cellular processes, and genetic information processes involved in composting. Taken together, this study indicates that deterministic assembly processes governed by OM content and quality as well as temperature influenced microbial community turnover and determined community functions during composting. These results are important for better understanding and predicting microbial-driven composting and for ultimately manipulating microorganisms for environmentally-friendly composting outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.