Abstract

Sources of organic matter (OM) and lipids were assessed and factors affecting OM degradation were studied for two sediment cores representing distinct depositional regimes (i.e., the oscillating oxic to suboxic/anoxic western basin and oxic Zaka Bay) for eutrophic Lake Bled, NW Slovenia. Lower surface organic carbon (OC) concentration was determined in the western basin than for Zaka Bay sediments (5.1 vs. 5.4 wt% dry sediment, respectively), but one order of magnitude greater total lipid concentration was observed in the former. Also, there was a higher proportion of autochthonous OM in the western basin (∼77% vs. ∼66%) on the basis of atomic C/N ratios. Lipid-based origin assessment suggested a similar contribution of autochthonous OM in the western basin (64–77%), but a lower one in Zaka Bay (<50%). It seems that redox potential is the main factor governing OM degradation in the western basin. In contrast, a contribution from more refractory terrestrial OM, via the surface inflow in Zaka Bay, and higher sedimentation rates may surpass redox effects in Zaka Bay. Overall, oxygen may play a more important role in degradation of the more labile pool (i.e., lipids) than bulk OM. Higher apparent degradation rate constants ( k′) for lipids also suggested a greater lability than for OC, while respective k′ values were higher in the oxic than anoxic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call