Abstract

AbstractThe quest for advanced energy storage devices with cheaper, safer, more resource‐abundant storage has triggered intense research into zinc ion batteries (ZIBs). Among them, organic materials as cathode materials for ZIBs have attracted great interest due to their flexible structure designability, high theoretical capacity, environmental friendliness, and sustainability. Although numerous organic electrode materials have been studied and different redox mechanisms have been proposed in the past decade, their electrochemical performance still needs further improvement, and the mechanisms require further exploration. This paper provides a systematical overview of three types of organic materials (bipolar‐type conductive polymer, n‐type conjugated carbonyl compounds, and p‐type material) on the energy storage mechanisms and distinct characteristics. We then focus on discussing the design strategies to improve electrochemical performance. Furthermore, the challenges and future research directions are discussed to provide a foundation for further developing organic‐based ZIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.