Abstract

AbstractAn approach to produce organic light‐emitting transistors (OLETs) containing a laterally arranged heterojunction structure, which minimizes exciton quenching at the metal electrodes, is described. This device configuration provides an organic light‐emitting diode (OLED) structure where the anode (source) electrode, hole‐transport material (field‐effect material), light‐emitting material, and cathode (drain) electrode are laterally arranged, thus offering a chance to control the electroluminescent intensity by changing the gate bias. Pentacene and tris(8‐quinolinolato)aluminum (Alq3) are employed as the field‐effect and light‐emitting materials, respectively. The laterally arranged heterojunction structures are achieved by successively inclined deposition of the field‐effect and light‐emitting materials. After deposition of pentacene, a narrow gap of about 10–20 nm between the drain electrode and pentacene was obtained, thereby creating an opportunity to fabricate a laterally arranged heterojunction. In the OLETs, unsymmetrical source and drain electrodes, that is, Au and LiF/Al ones, are used to ensure efficient injection of holes and electrons. Visible‐light emission from OLETs is observed under ambient atmosphere. This result is ascribed to efficient carrier injection and transport, formation of a heterojunction, as well as good luminescence from the organic emissive layer. The device structure serves as an excellent model system for OLETs and demonstrates a general concept of adjusting the charge‐carrier injection and transport, as well as the electroluminescent properties, by forming laterally arranged heterojunctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.