Abstract

Colloidal CdSe semiconductor nanoplatelets with characteristic longitudinal sizes of 20–70 nm and thicknesses of several atomic layers are synthesized. The spectra and kinetics of the photoluminescence of these quasi-two-dimensional nanostructures (quantum wells) at room and cryogenic temperatures are investigated. A hybrid light-emitting diode with the electron and hole transport layers based on TAZ and TPD organic compounds, respectively, and the active “emissive” element based on a layer of such single-component nanoplatelets is designed. The spectral and electrical characteristics of the fabricated device, emitting at a wavelength of λ = 515 nm, are determined. The use of quasi-two-dimensional nanostructures of this kind (nanoplatelets) is promising for the fabrication of hybrid light-emitting diodes with pure colors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.