Abstract

The haloalkaliphilic genus Thioalkalivibrio, widely used in bio-desulfurization, can oxidize H2S to So, which is excreted outside cells in the form of biosulfur globules. As by-product of bio-desulfurization, information on biosulfur globules is still very scant, which limits its high-value utilization. In this paper, the characteristics of biosulfur globules produced by Thioalkalivibrio versutus D301 and the possibility of cultivating sulfur-oxidizing bacteria as a high biological-activity sulfur source were studied. The sulfur element in the biosulfur globules existed in the form α-S8, which was similar to chemical sulfur. The biosulfur globule was wrapped with an organic layer composed of polysaccharides and proteins. The composition of this organic layer could change. In the formation stage of biosulfur globules, the organic layer was dominated by polysaccharides, and in later stage, proteins became the main component. We speculated that the organic layer was mainly formed by the passive adsorption of organic matter secreted by cells. The existence of organic layer endowed biosulfur with better bioavailability. Compared with those found using chemical sulfur, the growth rates of Acidithiobacillus thiooxidans ATCC 19377T, Thiomicrospira microaerophila BDL05 and Thioalkalibacter halophilus BDH06 using biosulfur increased several folds to an order of magnitude, indicating that biosulfur was a good sulfur source for cultivating sulfur-oxidizing bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.