Abstract

A method was developed for atom transfer radical polymerization (ATRP) synthesis of a nanocomposite consisting of dispersed, nanosized hard particles in a thermoplastic matrix. Octafunctional cubic silsesquioxanes were used as a platform to synthesize 8-arm star poly(methyl methacrylate) (PMMA) via ATRP. The cubic silsesquioxane, octakis(hydridodimethylsiloxy)octasilsesquioxane (Q8M8H), was converted to either octakis(2-bromo-2-methylpropionoxypropyldimethylsiloxy)octasilsesquioxane (OBPS) or the octaethylbenzyl chloride analogue. The bromo ester was successfully employed as an ATRP initiator using CuCl as catalyst, leading to formation of PMMA arms with controlled molecular weights and hence to nanocomposites with essentially complete control of dispersion and solids loading. The catalyst and initiator concentrations were demonstrated to affect the molecular weight distribution and the occurrence of star−star coupling caused by inevitable termination reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.