Abstract

Various amounts of silica nanoparticles were chemically incorporated into amorphous polyurethanes (PU) of two different molecular weights by sol–gel reactions, and the effects were studied in terms of mechanical, dynamic mechanical, dual, and triple shape memory effects (DSME and TSME) of the nanocomposite films. It was found that the silica particles act as multifunctional cross-links as well as reinforcing fillers and significantly augmented the glassy and rubbery state moduli, yield strength, break strength, glass transition temperature, and dual shape memory properties. A cohesive bilayer of the two films fabricated from an interpenetrating polymer network (IPN) exhibited synergistic mechanical properties in the glassy and rubbery states along with two undisturbed glass transitions by which an intermediate plateau region and TSME were demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.