Abstract

Fabrication of semiconductor nanowire laser arrays is very challenging, owing to difficulties in direct monolithic growth and patterning of III-V semiconductors on silicon substrates. Recently, methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) have emerged as an important class of high-performance solution-processed optoelectronic materials. Here, we combined the "top-down" fabricated polydimethylsiloxane rectangular groove template (RGT) with the "bottom-up" solution self-assembly together to prepare large-scale perovskite nanowire (PNW) arrays. The template confinement effect led to the directional growth of MAPbX3 along RGTs into PNWs. We achieved precise control over not only the dimensions of individual PNWs (width 460-2500 nm; height 80-1000 nm, and length 10-50 μm) but also the interwire distances. Well-defined dimensions and uniform geometries enabled individual PNWs to function as high-quality Fabry-Perot nanolasers with almost identical optical modes and similarly low-lasing thresholds, allowing them to ignite simultaneously as a laser array. Optical tests demonstrated that PNW laser arrays exhibit good photostabillity with an operation duration exceeding 4 × 107 laser pulses. Precise placement of PNW arrays at specific locations makes our method highly compatible with lithographic techniques, which are important for integrating PNW electronic and photonic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.