Abstract

A novel functional polycarbonate (PAGC), characterized by the presence of double bonds within its side chain, was successfully synthesized through a ternary copolymerization of propylene oxide (PO), allyl glycidyl ether (AGE), and carbon dioxide (CO2). Polyhedral oligomeric silsesquioxanes octamercaptopropyl (POSS-SH) was employed as a crosslinking agent, contributing to the formation of organic-inorganic hybrid materials. This incorporation was facilitated through thiol-ene click reactions, enabling effective interactions between the POSS molecules and the double bonds in the side chains of the polycarbonate. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) confirmed a homogeneous distribution of silicon (Si) and sulfur (S) in the polycarbonate matrix. The thiol-ene click reaction between POSS-SH and the polycarbonate led to a micro-crosslinked structure. This enhancement significantly increased the tensile strength of the polycarbonate to 42 MPa, a notable improvement over traditional poly (propylene carbonate) (PPC). Moreover, the cross-linked structure exhibited enhanced solvent resistance, expanding the potential applications of these polycarbonates in various plastic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call