Abstract
Two haloargentate hybrids, [Me-dabco]Ag2X3 (Me-dabco = 1-methyl-1,4-diazabicyclo-[2.2.2]octan-1-ium, X = I (1) or Br (2)), with the same formula but different structures have been synthesized by a slow evaporation method and characterized by microanalysis, infrared spectroscopy, thermogravimetric, and powder X-ray diffraction techniques. Hybrid 1 consists of completely isolated [Ag4I6]2- clusters, while hybrid 2 exhibits a complicated one-dimensional (1D) chain structure formed by four different configurations of neutral chains and two dissimilar configurations of anionic chains. Hybrid 2 undergoes two reversible order-disorder phase transitions, while hybrid 1 displays one reversible and one irreversible structural phase transition. Both 1 and 2 displayed step-like dielectric anomalies in the vicinity of the phase transition temperature. The corresponding dielectric constants in the high dielectric states are approximately 13 and 6 times higher than those in the low dielectric states for 1 and 2, respectively. Interestingly, the subtle change of halides from I- to Br- significantly affects the aggregated structure of haloargentate, the phase transition, and dielectric behaviors, revealing the typical 'butterfly effect' with the ion radii of halides in these two haloargentate hybrids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.