Abstract

PurposeThis paper aims to investigate the thermal stability and hydrophobicity of difference alkyl chain of silanes with silicon (Si) micro- and nanoparticles.Design/methodology/approachSol-gel methods have been used to design superhydrophobic glass substrates through surface modification by using low-surface-energy Isooctyl trimethoxysilane (ITMS) and Ethyl trimethoxysilane (ETMS) solution. Hierarchical double-rough scale solid surface was built by Si micro- and nanoparticles to enhance the surface roughness. The prepared sol was applied onto glass substrate using dip-coating method and was dried at control temperature of 400°C inside the tube furnace.FindingsThe glass substrate achieved the water contact angle as high as 154 ± 2° and 150.4 ± 2° for Si/ITMS and Si/ETMS films, respectively. The Si/ITMS and Si/ETMS also were equipped with low sliding angle as low as 3° and 5°, respectively. The Si micro- and nanoparticles in the coating system have created nanopillars between them, which will suspend the water droplets. Both superhydrophobic coatings have showed good stability against high temperature up to 200°C as there are no changes in WCA shown by both coatings. Si/ITMS film sustains its superhydrophobicity after impacting with further temperature up to 400°C and turns hydrophobic state at 450°C.Research limitations/implicationsFindings will be useful to develop superhydrophobic coatings with high thermal stability.Practical implicationsSol method provides a suitable medium for the combination of organic-inorganic network to achieve high hydrophobicity with optimum surface roughness.Originality/valueApplication of different alkyl chain groups of silane resin blending with micro- and nanoparticles of Si pigments develops superhydrophobic coatings with high thermal stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.