Abstract

A new heterogeneous precipitate of an organic-inorganic composite cation-exchanger poly-o-toluidine Zr(IV) phosphate was utilized for the preparation of a Hg(II) ion-sensitive membrane electrode for the determination of Hg(II) ions in real aqueous as well as in real samples. The electrode showed good potentiometric response characteristics, and displayed a linear log[Hg(2+)] versus EMF response over a wide concentration range of 1 x 10(-1) - 1 x 10(-6) M with a Nernstian slope of 30 mV per decade change in concentration with a detection limit of 1 x 10(-6). The membrane electrode showed a very fast response time of 5 s and could be operated well in the pH range 2 - 8. The selectivity coefficients were determined by the mixed-solution method, and revealed that the electrode was selective in the presence of interfering cations; however most of these did not show significant interference in the concentration range of 1 x 10(-1) - 1 x 10(-4) M. The lifetime of the membrane electrode was observed to be 120 days. The analytical utility of this electrode was established by employing it as an indicator electrode in the potentiometric titrations of Hg(2+) ions from a synthetic mixture as well as drain water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call