Abstract
Organic photovoltaic (OPV) cells have found their potential applications in the harvest of indoor light photons. However, the output power of such indoor devices is usually far from the demand of the internet of things. Therefore, it is essential to boost the output power of indoor organic photovoltaics to a much higher level. As wildly deployed among industrial and civil luminous environments, thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum. In this work, we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations. Impressively, under such thermal radiations, an improvement over 500% of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps, reaching a record high value of 279.1 μW cm−2 by the PM6:Y6-based device. The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights, which restricts the effective area under 10 cm2 in achieving 1 mW output power. This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells, and enlightens the further applications of indoor OPV cells under multiple illumination environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.