Abstract

Mesoporous silica (MS) spheres of different sizes with pH-responsive characteristics were synthesized based on Stöber’s theory. Organic functionalization with aminopropyl and carboxyl groups resulted in different materials, namely, MS@NH2@COOH. MS@NH2@COOH were observed to have a large number of carboxyl groups and multiamine chains, and were grafted into pore channels and pore outlets through systematic characterization analyses. All modified samples demonstrated the controlling of the delivery rate of DOX from the siliceous matrix. We also compared the drug release behavior of the DOX-loaded materials at high pH (7.4) and low pH (5.5) and studied the cytotoxicity on A549 cells. The experimental results indicated that the drug delivery system can better control drug release and have potential applications in the drug delivery field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.