Abstract
Silicoaluminophosphate (SAPO) molecular sieves are an important class of microporous materials and are useful for industrial catalysis and separations. They have been synthesized exclusively by the use of expensive and environmentally unfriendly organic structure-directing agents. Now the synthesis of SAPO molecular sieves is reported with MER, EDI, GIS, and ANA topologies under wholly inorganic conditions. Multinuclear MAS NMR analyses demonstrate the presence of Si, Al, and P atoms in their frameworks. These SAPO materials all have unusually high framework charge densities (0.25-0.46), owing to the small size of alkali metal cations used as an inorganic structure-directing agent. A continuous Si increase in the synthesis gel for MER-type SAPO molecular sieves led to the formation of framework Si(0Al) units, decreasing the number of extra-framework cations per unit cell and thus making the resulting solid useful for CO2 adsorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.