Abstract

Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m2h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC FO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven FO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant–foulant interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call