Abstract
The effect of OTS (octadecyltrichlorosilane) Self-Assembled Monolayer (SAM) grafted on SiO2 gate dielectric of pentacene-based OFETs (organic field-effect transistors) is investigated. A significant improvement of the charge mobility (μ), up to 0.74 cm2/V s, is reached thanks to OTS treatment. However, in spite of improved performances, several drawbacks, such as an increase in mobility dispersion, substantial hysteresis in IDS-VG characteristics and high threshold voltages (VT), are observed. Changing solvent and deposition method turns out to have no significant effect on the mobility dispersion. A more accurate approach on the evolution of the mobility and the threshold voltage dispersion with OTS storage time highlights the effect of the OTS solution aging. Even if no difference is evidenced in the surface energy and roughness of the OTS layer, electrical characteristics exhibit considerable deterioration with OTS solution storage time. Using an “aged” OTS solution, opened under air, kept under argon and distilled before use, results in an increase of the IDS-VG hysteresis as well as in VT and in mobility dispersion. In comparison, fresh-OTS-based OFETs present a very low hysteresis, a threshold voltage close to 0 and a much lower mobility dispersion. It is demonstrated that aged OTS solutions contain impurities that are not removed by distillation process, which leads to a less densely packed layer causing interfacial charge traps thus deteriorated performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.