Abstract

Deoxyribonucleic acid (DNA) bio-polymers derived from fish waste products are employed as gate dielectric in n-type methanofullerene as well as p-type pentacene based organic field-effect transistors working at low voltage levels and low gate leakage currents. Based on the large hysteresis in the transfer characteristics, operation of the transistor as a non-volatile memory element is shown. Practically hysteresis free operation of DNA based transistors is obtained at low voltage levels by adding an additional aluminium oxide blocking layer between the organic semiconductor and the DNA gate dielectric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.