Abstract
Organic fertilizer can improve soil structure and enhance the nutrient content in soil and is beneficial to sustainable agricultural development. However, the influence of organic fertilizer substitutions on NH3 and N2O emissions from farmland is unclear. Thus, we set up an organic substitution field experiment in Northeast China. The experiment included six treatments: single application of chemical fertilizers (NPK: 250kg N ha-1); NO10, 10% reduction in chemical nitrogen fertilizers (225kg N ha-1) + chicken manure (25kg N ha-1); NO20, 20% reduction in chemical nitrogen fertilizers (200kg N ha-1) + chicken manure (50kg N ha-1); NO30, 30% reduction in chemical nitrogen fertilizers (175kg N ha-1) + chicken manure (75kg N ha-1); NO40, 40% reduction in chemical nitrogen fertilizers (150kg N ha-1) + chicken manure (100kg N ha-1); and no-nitrogen fertilizer (CK). This experiment investigated the effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on NH3 and N2O emissions and nitrogen use efficiency in a maize field. The results showed that, compared with chemical N, organic fertilizer mitigated NH3 volatilization but promoted the soil N2O total emissions during the whole growth stage. NH3 cumulative volatilization decreased with the increase in the substitution rate of organic fertilizer. Compared with the NPK treatment, the cumulative volatilization of NH3 in the NO30 and NO40 treatments decreased by 15.24 and 17.92%, respectively. The NO40 treatment had the highest N2O emission in the whole growth stage, and the N2O emission of the NO40 treatment increased by 10.72% compared to the NPK treatment. Moreover, the yield, partial factor productivity (PFP), nitrogen harvest index (NHI), and apparent nitrogen recovery efficiency (NRE) of NO30 treatment were the highest of all treatments, and the yields, PFP, plant N accumulation, grain N accumulation, and the cumulative emissions of NH3 and N2O were similar to N20 treatment. In conclusion, nitrogen fertilizer use efficiency was enhanced, decreasing environmental pollution from livestock under organic fertilizer substitution conditions. We suggested 20% or 30% substitution rates of organic fertilizer were proper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.