Abstract

Ferroelastic materials with high phase transition temperature have broad application prospects in information conversion and storage, shape memory, energy conversion, hyperelasticity, etc. However, most of the current reports focus on inorganic ferroelastic materials. Inorganic ferroelastic materials have the disadvantages of high energy consumption and harmful metals, which limit their application in practical work. In contrast, organic ferroelastic materials have the advantages of structural adjustability, environmental protection, easy processing, low cost, mechanical flexibility, and so on, which have great development potential in new ferroelastic materials. Here, we have successfully designed and synthesized a pair of homochiral enantiomers [(R/S)-4-fluorobenzoic acid-2-amino-2-phenylethanol] (R- and S-F) using the chemical design strategy of H/F substitution. Compared with the non-F substitution [(R/S)-benzoic acid-2-amino-2-phenylethanol] (R- and S-H), they undergo 2F1-type ferroelastic phase transitions at 370 K. Notably, the ferroelastic domains of R/S-F can be controlled through two physical channels that are temperature and stress, showing great potential in dual-channel switches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.