Abstract
AbstractRecent research demonstrates the viability of organic electrochemical transistors (OECTs) as an emergent technology for biosensor applications. Herein, a comprehensive summary is provided, highlighting the significant progress and most notable advances within the field of OECT‐based biosensors. The working principles of an OECT are detailed, with specific attention given to the current library of organic mixed ionic‐electronic conductor (OMIEC) channel materials utilized in OECT biosensors. The application of OECTs for metabolite, ion, neuromorphic, electrophysiological, and virus sensing as well as immunosensing is reported, detailing the breadth and scope of OECT‐based biosensors. Furthermore, an outlook and perspective on synthetic molecular design of future channel materials, specifically designed for OECT biosensors, is provided. The development of optimized channel materials, creative device architectures, and operational nuances will set the stage for OECT‐based biosensors to thrive and accelerate their clinical prevalence in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.