Abstract

Organic photomechanical crystals have great promise as molecular machines, but their development has been hindered by a lack of clear theoretical design principles. While much research has focused on the choice of the molecular photochrome, density functional theory calculations here demonstrate that crystal packing has a major impact on the work densities that can be produced by a photochrome. Examination of two diarylethene molecules reveals that the predicted work densities can vary by an order of magnitude across different experimentally known crystal structures of the same species. The highest work densities occur when molecules are aligned in parallel, thereby producing a highly anisotropic photomechanical response. These results suggest that a greater emphasis on polymorph screening and/or crystal engineering could improve the work densities achieved by photomechanical engines. Finally, an inherent thermodynamic asymmetry is identified that biases photomechanical engines to exhibit higher work densities in the forward stroke direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.