Abstract

ABSTRACT Water stable isotopes have been widely used as natural tracers to investigate soil–plant–atmosphere interactions. Recent developments in induction module cavity ring-down spectroscopy (IM-CRDS) have made it possible to rapidly complete isotope analyses, and to combust co-extracted organic compounds at the same time. However, the agreement between IM-CRDS and isotope ratio mass spectrometry (IRMS) analyses has generally been poor and was primarily attributable to spectral interference of IM-CRDS. Here we evaluated the impacts of organic contamination on the isotope ratios using IM-CRDS with two different methods. No spectral interference was observed for solid samples measured directly by IM-CRDS, whereas clear organic contamination occurred in isotope analyses for pre-extracted plant stem and leaf samples. Our results demonstrate that IM-CRDS can fully combust co-extracted organic compounds by in-line oxidation in the direct measurement of solid samples, although this may not guarantee that the IM-CRDS can obtain better isotopic data than IRMS. It may be risky to evaluate the performance of IM-CRDS by measuring pre-extracted water samples because cryogenic vacuum distillation is likely to introduce extra organic compounds, which may not be fully removed during subsequent IM-CRDS measurement. In addition, spectral variables are useful for post-processing corrections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call