Abstract

The release of organic contaminants from melting snow poses risks to aquatic and terrestrial organisms and to humans who rely on drinking water and food production from regions that are seasonally snow-covered. Measured and model-predicted spring peak concentrations in waters receiving snowmelt motivate a thorough investigation of organic contaminant behaviour during melting. On the basis of the current understanding of snow metamorphosis, snowmelt hydrology and chemical partitioning in snow, this critical review aims to provide a qualitative picture of the processes involved in the release of organic contaminants from a melting snowpack. The elution sequence of organic substances during snowmelt is strongly dependent on their environmental partitioning properties and the physical properties of the snowpack. Water-soluble organic contaminants can be discharged in greatly elevated concentrations at an early stage of melting, while the bulk of the hydrophobic chemicals attached to particles is often released at the end of the melt period. Melting of a highly metamorphosed and deep snowpack promotes such shock load releases, whereas a shallow snow cover over a relatively warm ground experiencing irregular melting over the winter season is unlikely to generate notable peak releases of organic substances. Meltwater runoff over frozen ground directly transfers contaminant shock loads into receiving water bodies, while permeable soils buffer and dilute the contaminants. A more quantitative understanding of the behaviour of organic contaminants in varying snowmelt scenarios will depend on controlled laboratory studies combined with field investigations. Reliable numerical process descriptions will need to be developed to integrate water quality and contaminant fate models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.