Abstract
The xylem exudates of soybean (Glycine max cv Williams), provided with fixed N, were characterized as to their organic constituents and in vivo and in vitro complexation of plutonium, iron, cadmium, and nickel. Ion exchange fractionation of whole exudates into their compound classes (organic acid, neutral, amino acid, and polyphosphate), followed by thinlayer electrophoresis, permitted evaluation of the types of ligands which stabilize each element. The polyvalent elements plutonium(IV) and iron(III) are found primarily as organic acid complexes, while the divalent elements nickel(II) and cadmium(II) are associated primarily with components of the amino acid/peptide fraction. For plutonium and cadmium, it was not possible to fully duplicate complexes formed in vivo by back reaction with whole exudates or individual class fractions, indicating the possible importance of plant induction processes, reaction kinetics, and/or the formation of mixed ligand complexes. The number and distribution of specific iron- and nickel-containing complexes varies with plant age and appears to be related to the relative concentration of organic acids and amino acids/peptides being produced and transported in the xylem as the plant matures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.