Abstract

The Pliocene lignite hypothesis is an environmental hypothesis that has been proposed to explain the etiology of Balkan endemic nephropathy (BEN). Aqueous leaching experiments were conducted on a variety of coal samples in order to simulate groundwater leaching of organic compounds, and to further test the role of the Pliocene lignite hypothesis in the etiology of BEN. Experiments were performed on lignite coal samples from endemic BEN areas in Romania and Serbia, and lignite and bituminous coals from nonendemic regions in Romania and the USA. Room temperature, hot water bath, and Soxhlet aqueous extraction experiments were conducted between 25 and 80 °C, and from 5 to 128 days in duration. A greater number of organic compounds and in higher concentrations were present in all three types of leaching experiments involving endemic area Pliocene lignite samples compared to all other coals examined. A BEN causing molecule or molecules may be among phenols, PAHs, benzenes, and/or lignin degradation compounds. The proposed transport pathway of the Pliocene lignite hypothesis for organic compound exposure from endemic area Pliocene lignite coals to well and spring drinking water, is likely. Aromatic compounds leached by groundwater from Pliocene lignite deposits in the vicinity of endemic BEN areas may play a role in the etiology of the disease. A better understanding of organic compounds leached by groundwater from Pliocene lignite deposits may potentially lead to the identification and implementation of effective strategies for the prevention of exposure to the causative agent(s) for BEN, and in turn, prevention of the disease.

Highlights

  • Most of the world’s energy is provided by fossil fuels, and coal is the world’s most abundant fossil fuel with reserves substantially greater than those of oil and natural gas (Kavouridis and Koukouzas 2008). ‘‘Lignite’’ ranks in between peat and subbituminous in the sequential transformation from decomposed plant matter to anthracite (Whitehurst 1978)

  • Samples were first analyzed by gas chromatography (GC)–Flame Ionization Detector (FID) in order to determine whether separation by liquid chromatography (LC) was needed prior to gas chromatography/mass spectrometry (GC/MS) analysis

  • Some compounds listed as a match quality of 89–50 % may have been a C90 % match quality, as the GC/MS scans began at 50 m/z

Read more

Summary

Introduction

Most of the world’s energy is provided by fossil fuels, and coal is the world’s most abundant fossil fuel with reserves substantially greater than those of oil and natural gas (Kavouridis and Koukouzas 2008). ‘‘Lignite’’ ranks in between peat and subbituminous in the sequential transformation from decomposed plant matter to anthracite (Whitehurst 1978). Balkan Peninsula countries rely heavily on lignite to meet their energy demands, as for example, it constitutes more than 85 % of the total coal reserves in Bulgaria (Siskov 1997), and generates over 60 % (Kavouridis and Koukouzas 2008) to more than 75 % (Iordanidis and Georgakopoulos 2003) of the total electric power output in Greece. Organic compounds may be mobilized from coal into drinking water by groundwater, and by surface water, for example, during mining, and during transportation and storage prior to electric power plant utilization. Potential human health risks of organic compounds leached from coal include endocrine disruption, nephrotoxicity, and cancer (Gaitan et al 1993; Bunnell et al 2006; Finkelman 2007)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call