Abstract

Background: Diesel exhaust particles (DEP) have been reported to worsen allergic airway inflammation in mice. Recently, the organic chemical components of DEP (DEP-OC) were found to be important contributors to the aggravation of allergic airway inflammation in mice. The purpose of this study was to examine the effects of DEP-OC on atopic dermatitis (AD)-like skin lesions induced by picryl chloride (PiCl) in NC/Nga mice. Methods: DEP were extracted with benzene/ethanol, and the soluble organic fraction formed the DEP-OC. NC/Nga male mice received simultaneous application of DEP-OC and/or PiCl on their ears once a week for 9 or 3 weeks. We evaluated skin lesions by noting scaling, eruption, excoriation, erosion, hemorrhage, pathologic changes, production of cytokines, and IgE level in the serum. Results: PiCl application alone produced progressively severe AD-like skin lesions. The application of PiCl plus DEP-OC resulted in a marked worsening of skin lesions in the early stages of AD. Moreover, mast cell counts significantly increased in the subcutaneous tissue. Administration of PiCl combined with DEP-OC resulted in a greater increase in the local expression of interleukin-4, keratinocyte chemoattractant, and neutrophils in subcutaneous tissue compared with PiCl treatment alone. In contrast, the combination treatment produced lower levels of IFN-γ compared with PiCl treatment alone. Conclusions: DEP-OC application to the skin aggravated PiCl-induced AD. This aggravation may be due to activation of the Th2-associated immune responses by the organic chemicals in DEP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.