Abstract
AbstractThe practical application of solid‐state polymer lithium‐metal batteries (LMBs) is plagued by the inferior ionic conductivity of the applied polymer electrolytes (PEs), which is caused by the coupling of ion transport with the motion of polymer segments. Here, solvated molecules based on ionic liquid and lithium salt with strong Li+‐solvent interaction are inserted into an elaborately engineered perfluoropolymer electrolyte via ionic dipole interaction, extensively facilitating Li+ transport and improving mechanical properties. The intensified formation of solvation structures of contact ion pairs and ionic aggregates, as well as the strong electron‐withdrawal properties of the F atoms in perfluoropolymers, give the PE high electrochemical stability and excellent interfacial stability. As a result, Li||Li symmetric cells demonstrate a lifetime of 2500 h and an exceptionally high critical current density above 2.3 mA cm−2, Li||LiFePO4 batteries exhibit consistent cycling for 550 cycles at 10 C, and Li||uncoated LiNi0.8Co0.1Mn0.1O2 cells achieve 1000 cycles at 0.5 C with an average Coulombic efficiency of 98.45 %, one of the best results reported to date based on PEs. Our discovery sheds fresh light on the targeted synergistic regulation of the electro‐chemo‐mechanical properties of PEs to extend the cycle life of LMBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.