Abstract
Entrance tunnel construction at the Äspö Hard Rock Laboratory opened a conductive vertical fracture zone at a depth of 70 m on March 13, 1991. Three weeks later a sharp dilution front corresponding to 80% shallow water inflow to the originally saline fracture zone arrived at the entrance tunnel depth. In spite of this large inflow of shallow water, the fracture zone has remained persistently anoxic over a subsequent 2 1 2 - year period. Results from gas sampling and 14C dating of dissolved organic and inorganic carbon conclusively show that recent organic carbon is being transported into the fracture zone and oxidized to carbon dioxide. These results are important when considering possible changes of redox status in the deep groundwater environment during construction and operation of a repository for spent nuclear fuel. Opening this fracture zone to large-scale surface water inflow adds reducing capacity in the form of organic carbon. This implies that the soil cover may provide important protection against input of dissolved oxygen to fractures being drained during the open phase of the repository.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.