Abstract

AbstractMicroorganisms mediate the many biochemical transformations of aquatic ecosystems. Heterotrophic bacteria mineralise most of the total carbon of freshwater and marine ecosystems via the dissolved organic carbon (DOC) fraction. This paper describes the relationship between primary and heterotrophic microbial production in a major subtropical river in South East Queensland, Australia, in dry weather. Stormwater was not the major external source of organic carbon in dry weather. The rate of heterotrophic bacterial production was 4 g C m−2 d−1. The bacteria were decomposing over four times more organic carbon per day than the daily primary production (1.1 g C m−2 d−1). There was not sufficient organic carbon generated through photosynthesis to support the heterotrophic bacterial growth. The river ecosystem was net heterotrophic. However, the concentration of the DOC in the water column remained relatively constant. The bacteria mineralised the DOC pool every few days. This suggests that organic carbon was constantly being supplied to this aquatic ecosystem from a terrestrial source that was readily degradable. The organic carbon pollution was likely due to non‐point sources related to human activities in the catchment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.