Abstract

We studied the transport of particulate organic carbon (POC) and dissolved organic carbon (DOC) in two regulated rivers during minimum and increasing discharges. Mean annual concentrations of total POC, measured monthly during conditions of minimum discharge from the dams, were twice as high at a station below a dam with a selective withdrawal system on the Kootenai River (KR, 0.15 mg 1−1), as at station below a dam with hypolimnetic water releases on the Flathead River (FR, 0.07 mg 1−1). Annual mean concentrations of DOC were similar below both dams (1.62 mg 1−1 FR; 1.71 KR). The percentage of POC in four size fractions differed in regulated and unregulated reaches of each river system; the smallest size fraction (0.45–10 smm) constituted a larger percentage of the total POC at the stations below the dams (50–93%), because POC in large size classes had settled out in the reservoir. The three largest size fractions (10–1000 µm) comprised a larger percentage of the total POC when samples were taken during conditions of full discharge from the dam. We measured large increases in all size classes of POC in samples collected during increasing discharges in a regulated reach, reflecting the component of sloughed periphyton and resuspended organic matter that were added during periods of hydropower generation at the dam. Seston (355 µm to 1 cm) collected in nets increased dramatically during increasing flows; concentrations of particulate organic matter (POM) in samples collected two and three hours after water levels began to rise were 572 and 1440 times higher than those collected during minimum discharge at the dam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call