Abstract

Conjugated polymers (CPs) possess a unique set of features setting them apart from other materials. These properties make them ideal when interfacing the biological world electronically. Their mixed electronic and ionic conductivity can be used to detect weak biological signals, deliver charged bioactive molecules, and mechanically or electrically stimulate tissues. CPs can be functionalized with various (bio)chemical moieties and blend with other functional materials, with the aim of modulating biological responses or endow specificity toward analytes of interest. They can absorb photons and generate electronic charges that are then used to stimulate cells or produce fuels. These polymers also have catalytic properties allowing them to harvest ambient energy and, along with their high capacitances, are promising materials for next-generation power sources integrated with bioelectronic devices. In this perspective, an overview of the key properties of CPs and examination of operational mechanism of electronic devices that leverage these properties for specific applications in bioelectronics is provided. In addition to discussing the chemical structure-functionality relationships of CPs applied at the biological interface, the development of new chemistries and form factors that would bring forth next-generation sensors, actuators, and their power sources, and, hence, advances in the field of organic bioelectronics is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.