Abstract

Plasma polymers such as polyterpenol have been investigated for use as biofunctional coatings, insulating/dielectric layers in electronics, and adhesion promoting interlayers in organic electronics. The commercialisation of plasma polymers in these and other biomaterial-related applications is contingent upon their ability to resist degradation in response to sterilising and potentially damaging ionising radiation, such as gamma rays. Hence, this study focusses on the stability of plasma polymerised polyterpenol thin films following exposure to gamma radiation doses ranging from 0 to 100 kGy. Irradiated films were subjected to ellipsometry, current–voltage, dielectric, Fourier transform infrared, and atomic force microscopy characterisation. Stability of polyterpenol was evidenced by the observed lack of radiation-induced variation in its complex refractive index, optical band gap, relative permittivity, dc conductivity, surface chemical functionalities, and surface morphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.