Abstract

In this paper we propose a detailed investigation on the electrical response of Organic Field Effect Transistors (OFETs) assembled on flexible plastic substrates to mechanical deformations. We will demonstrate that, by applying a surface deformation by an external mechanical stimulus we are inducing morphological and structural changes in the organic semiconductor, giving rise to a marked, reproducible and reversible variation of the device output current. We will show how the intrinsic properties of the employed active layers play a crucial role in determining the final sensitivity to the mechanical deformation. Finally we will also demonstrate that the fabricated flexible system can be successfully employed for different applications that go from the detection of bio-mechanical parameters (joints motion, breath rate, etc.) in the wearable electronics field, to tactile transduction for the realization of artificial “robot skins”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.