Abstract

Rapid analyses methods for the assessment of soil microbiota are lacking. In a commercial farm tomato plants were subjected to different fertilization strategies: 1. mineral Control (C); 2. Organic amendment (O); 3. Organic amendment + Micosat F © biofertilizer (OM). A first rapid method (Litterbag-NIRS) concerned hay litterbags coupled with a smart SCiOTM device. A second method (Foliar-NIRS) used the same device on the leaves. The plants showed positive responses to the amendment and biofertilization in the yield: C 60.5.1 t ha-1vs. 70.8 in O (+17%) and 74.2 in OM (+23% from C and + 5% (P 0.08) from O). The use of Litterbag-NIRS fingerprinting, completed with litterbags phenotyping and elaborated with a multivariate support vector machine classifier provided a similar knowledge to that obtained from microbial and chemical analyses of the soil. The reason for this response is that the analyses were embedded in the Litterbag-NIRS at medium-high precision. A polydromic function was hypothesized in order to disentangle the activities of different soil microbial populations from each other. The organic amendment delayed the functionality of the rapid r-strategist microbial populations, but at the same time activated slow k-strategists to intake the walls of the hay inside the litterbags. In this sense, the Litterbag-NIRS test can provide an effective “swamp” of the microbial fertility of the soil. Briefly, the Litterbag-NIRS coupled with Foliar-NIRS accounted for 95% of the average yield results, and both are therefore recommended for a rational assessment of microbial soil fertility.

Highlights

  • Soil fertility, usually defined as the ability of a soil to promote plant growth and yield by integrating different soil functions[1] including nutrient availability, microbial activity and physical properties is fundamental for determining the productivity of all farming systems

  • In detail the non-digestible NDF increased by 29% and the ADF was enhanced by +17%, which resulted in a rise in the Crop Maturity Index of 94% vs. the C pairing with the O treatment (Figure 4)

  • After fresh organic matter (FOM) is supplied to soils, or vital newborn roots start to develop into the soil, many dormant microorganisms are triggered into activity, and this leads to dramatic changes in the structure of the microbial community

Read more

Summary

Introduction

Usually defined as the ability of a soil to promote plant growth and yield by integrating different soil functions[1] including nutrient availability, microbial activity and physical properties is fundamental for determining the productivity of all farming systems. The knowledge of chemical, physical, and biological properties of a given soil is fundamental to reach a high standard production. Increasing interest in microorganisms, such as endophytes, symbionts, pathogens and plant growth promoting rhizobacteria, was observed in the literature, while less attention was paid to the larger community of soil microorganisms, or soil microbiome, which may have more far-reaching effects. Each organism in the community of soil microorganisms acts in coordination with the overall soil microbiome to influence plant health and crop productivity[6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call