Abstract

Constructing highly planar, extended π-electron systems is an important strategy for achieving high-mobility organic semiconductors. In general, there are two synthetic strategies for achieving π-conjugated systems with high planarity. The conventional strategy connects neighboring aromatic rings through covalent bonds to restrict the rotation about single bonds. However, this usually requires a complex sequence of synthetic steps to achieve this target, which can be costly and labor-intensive. More recently, noncovalent through-space intramolecular interactions, which are defined here as noncovalent conformational locks, have been employed with great success to increase the planarity and rigidity of extended π-electron systems; this has become a well-known and important strategy to design and synthesize highly planar π-conjugated systems for organic electronics. This review offers a comprehensive and general summary of conjugated systems with such noncovalent conformational locks, including O···S, N···S, X···S (where X = Cl, Br, F), and H···S through-space interactions, together with analysis by density functional theory computation, X-ray diffraction, and microstructural characterization, as well as by evaluation of charge transport in organic thin-film transistors and solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.