Abstract

Heavy metal pollution is a worldwide problem affecting the quality of agricultural production and human health. In this study, spent mushroom substrate (SMS) and its compost (CSMS) were used to remedy black soil and red soil with simulated Pb contamination, aiming to discover their role in the improving rhizosphere environment and structuring rhizosphere bacterial community under lead stress. We designed an ultra-small-scale plot experiment to separate the rhizosphere from non-rhizosphere soil when planting water spinach (Ipomoea aquatica Forsk). The results showed that under 600 mg/kg of lead pollution, CSMS and SMS had no significant effect on the rhizosphere bacterial diversity in the black soil, but CSMS significantly increased the rhizosphere bacterial diversity in the red soil. The amendments significantly increased the percentage of Proteobacteria and Bacteroidetes in rhizosphere soil, and the relative abundance of some beneficial genera, such as Pseudoxanthomonas, Rhizomicrobium, Lysobacter etc., which subsequently restructured the bacterial community. The compositions of bacterial community of the red soil remediated by both amendments evolved to those of the black soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.