Abstract

A series of organic acids, including maleic acid (maleicA), malic acid (malicA), succinic acid (SA), and oxalic acid (OA)/oxalate, was evaluated as green additives to promote the selective Al(III)-catalyzed production of hydroxymethylfurfural (HMF) from food waste. The roles of Al(III)–organic acid interactions in altering the catalytic functions were elucidated on the basis of experimental and computational evidence. The catalytic results showed that the Al/OA and Al/oxalate systems gave the slowest glucose conversion among the studied systems. OA/oxalate had such a high affinity for Al(III), that the Lewis acidity of Al(III) (i.e., ability to accept electron pairs) was unfavorably reduced, which was supported by the theoretical calculations of Gibbs free energies considering the Al(III)–OA complexes the most thermodynamically feasible. When rice waste was used as the substrate, which is rich in glucose-based starch, the addition of maleicA to the Al(III) system enhanced the HMF selectivity. The Lewis ac...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.