Abstract

We predict that high temperature Bose-Einstein condensation of charge transfer excitons can be achieved in organic-two-dimensional (2D) material heterostructures, at ∼50-100 K. Unlike 2D bilayers that can be angle-misaligned, organic-2D systems generally have momentum-direct low-energy excitons, thus favoring condensation. Our predictions are obtained for ZnPc-MoS2 using state-of-the-art first-principles calculations with the GW-BSE approach. The exciton energies we predict are in excellent agreement with recent experiments. The lowest energy charge transfer excitons in ZnPc-MoS2 are strongly bound with a spatial extent of ∼1-2 nm and long lifetimes (τ0 ∼ 1 ns), making them ideal for exciton condensation. We also predict the emergence of inter-ZnPc excitons that are stabilized by the interaction of the molecules with the 2D substrate. This novel way of stabilizing intermolecular excitons by indirect substrate mediation suggests design strategies for singlet fission and exciton multiplication, which are important to overcome the Shockley-Queisser efficiency limit in solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call