Abstract
Although emerging evidence suggests a potential role of calcium/calmodulin-dependent kinase II (CaMKII) in prostate cancer, its role in prostate cancer tumorigenesis is largely unknown. Here, we examine whether the acetyl CoA-CaMKII pathway, first described in frog oocytes, promotes prostate cancer tumorigenesis. In human prostate cancer specimens, metastatic prostate cancer expressed higher levels of active CaMKII compared with localized prostate cancer. Correspondingly, basal CaMKII activity was significantly higher in the more tumorigenic PC3 and PC3-mm2 cells relative to the less tumorigenic LNCaP and C4-2B4 cells. Deletion of CaMKII by CRISPR/Cas9 in PC3-mm2 cells abrogated cell survival under low-serum conditions, anchorage-independent growth and cell migration; overexpression of constitutively active CaMKII in C4-2B4 cells promoted these phenotypes. In an animal model of prostate cancer metastasis, genetic ablation of CaMKII reduced PC3-mm2 cell metastasis from the prostate to the lymph nodes. Knockdown of the acetyl-CoA transporter carnitine acetyltransferase abolished CaMKII activation, providing evidence that acetyl-CoA generated from organelles is a major activator of CaMKII. Genetic deletion of the β-oxidation rate-limiting enzyme ACOX family proteins decreased CaMKII activation, whereas overexpression of ACOXI increased CaMKII activation. Overall, our studies identify active CaMKII as a novel connection between organelle β-oxidation and acetyl-CoA transport with cell survival, migration, and prostate cancer metastasis.Significance: This study identifies a cell metabolic pathway that promotes prostate cancer metastasis and suggests prostate cancer may be susceptible to β-oxidation inhibitors. Cancer Res; 78(10); 2490-502. ©2018 AACR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.