Abstract

Cauliflower protoplasts were fused to determine the effect of protoplast source and pretreatment on organellar segregation in fusion products. Mitochondrial and chloroplast type were determined for over 250 calli from eight fusions between iodoacetate-treated or γ-irradiated leaf or hypocotyl protoplasts with fertile or Ogura cytoplasms. Organelles in fusion-derived calli were identified with five mitochondrial probes and one chloroplast probe. Mitochondrial and chloroplast segregation were independent but biased. Most calli had B. oleracea chloroplasts, but more calli had Ogura mitochondria than B. oleracea ones. Neither protoplast source nor pretreatment alone affected organelle segregation. However, iodoacetate treatment of hypocotyl protoplasts reduced their mitochondrial contribution to the fusion products although it did not affect chloroplast segregation. Over half of the calli had mitochondrial genomes distinct from those of either fusion partner; many of these contained the complete mitochondrial genome of one partner along with some mitochondrial DNA from the other. Out of 258 calli, 83 showed evidence of mitochondrial recombination, most commonly by formation of a novel 11-kb PstI fragment near the atp9 region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call