Abstract

BackgroundSpaceflight presents a novel environment that is outside the evolutionary experience of terrestrial organisms. Full activation of the International Space Station as a science platform complete with sophisticated plant growth chambers, laboratory benches, and procedures for effective sample return, has enabled a new level of research capability and hypothesis testing in this unique environment. The opportunity to examine the strategies of environmental sensing in spaceflight, which includes the absence of unit gravity, provides a unique insight into the balance of influence among abiotic cues directing plant growth and development: including gravity, light, and touch. The data presented here correlate morphological and transcriptome data from replicated spaceflight experiments.ResultsThe transcriptome of Arabidopsis thaliana demonstrated organ-specific changes in response to spaceflight, with 480 genes showing significant changes in expression in spaceflight plants compared with ground controls by at least 1.9-fold, and 58 by more than 7-fold. Leaves, hypocotyls, and roots each displayed unique patterns of response, yet many gene functions within the responses are related. Particularly represented across the dataset were genes associated with cell architecture and growth hormone signaling; processes that would not be anticipated to be altered in microgravity yet may correlate with morphological changes observed in spaceflight plants. As examples, differential expression of genes involved with touch, cell wall remodeling, root hairs, and cell expansion may correlate with spaceflight-associated root skewing, while differential expression of auxin-related and other gravity-signaling genes seemingly correlates with the microgravity of spaceflight. Although functionally related genes were differentially represented in leaves, hypocotyls, and roots, the expression of individual genes varied substantially across organ types, indicating that there is no single response to spaceflight. Rather, each organ employed its own response tactics within a shared strategy, largely involving cell wall architecture.ConclusionsSpaceflight appears to initiate cellular remodeling throughout the plant, yet specific strategies of the response are distinct among specific organs of the plant. Further, these data illustrate that in the absence of gravity plants rely on other environmental cues to initiate the morphological responses essential to successful growth and development, and that the basis for that engagement lies in the differential expression of genes in an organ-specific manner that maximizes the utilization of these signals – such as the up-regulation of genes associated with light-sensing in roots.

Highlights

  • Spaceflight presents a novel environment that is outside the evolutionary experience of terrestrial organisms

  • Ground control experiments were conducted using identical Advanced Biological Research System (ABRS) hardware and an environmental chamber programmed to International Space Station (ISS) environmental conditions. Both flight and ground control plants were harvested after 12 days of growth to KSC Fixation Tubes (KFTs), and ground control samples were collected parallel to every spaceflight sample

  • The opportunity to examine the strategies of environmental sensing in spaceflight provides a unique insight into the balance among these cues during the course of plant development

Read more

Summary

Introduction

Spaceflight presents a novel environment that is outside the evolutionary experience of terrestrial organisms. ISS capabilities include stable orbital environment, flexible-environment growth chambers, on orbit imaging, functional laboratory-bench areas, crew time for harvest, and a facile, reliable sample storage and return strategy [1,2,3]. Given these capabilities, the 2010 NRC Decadal Survey, Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era [4] strongly encouraged the application of molecular biology technologies to ISS studies to address fundamental questions of plant growth and development in spaceflight, in the absence of unit gravity, which is considered a major environmental force shaping plant evolution. Many studies indicated that as engineering challenges were overcome, plant growth and development approached terrestrial norms [6,9,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call