Abstract

BackgroundCurrent treatments for salivary gland (SG) hypofunction are palliative and do not address the underlying cause or progression of the disease. SG-derived stem cells have the potential to treat SG hypofunction, but their isolation is challenging, especially when the tissue has been damaged by disease or irradiation for head and neck cancer. In the current study, we test the hypothesis that multipotent bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model are capable of trans-differentiating to the SG epithelial cell lineage when induced by a native SG-specific extracellular matrix (SG-ECM) and thus may be a viable substitute for repairing damaged SGs.MethodsRat BM-MSCs were treated with homogenates of decellularized rat SG-ECM for one hour in cell suspension and then cultured in tissue culture plates for 7 days in growth media. By day 7, the cultures contained cell aggregates and a cell monolayer. The cell aggregates were hand-selected under a dissecting microscope, transferred to a new tissue culture dish, and cultured for an additional 7 days in epithelial cell differentiation media. Cell aggregates and cells isolated from the monolayer were evaluated for expression of SG progenitor and epithelial cell specific markers, cell morphology and ultrastructure, and ability to form SG-like organoids in vivo.ResultsThe results showed that this approach was very effective and guided the trans-differentiation of a subpopulation of CD133-positive BM-MSCs to the SG epithelial cell lineage. These cells expressed amylase, tight junction proteins (Cldn 3 and 10), and markers for SG acinar (Aqp5 and Mist 1) and ductal (Krt 14) cells at both the transcript and protein levels, produced intracellular secretory granules which were morphologically identical to those found in submandibular gland, and formed SG-like organoids when implanted in the renal capsule in vivo.ConclusionsThe results of this study suggest the feasibility of using autologous BM-MSCs as an abundant source of stem cells for treating SG hypofunction and restoring the production of saliva in these patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.