Abstract

Small-cell lung cancer (SCLC) accounts for nearly 15% of lung cancer cases and exhibits aggressive clinical behavior characterized by rapid growth and metastatic spread to multiple organs. About 70% of patients with SCLC present with extensive disease and distant metastases at diagnosis. HSP90 is a 90-kDa molecular chaperone whose association is required for the stability and function of its numerous "client proteins." Here, we assessed the therapeutic potential of the HSP90 inhibitor 17-DMAG in SCLC. Notably, 17-DMAG hindered the viability of human SCLC cell lines-regardless of their chemosensitivity-via the decreased expression of client proteins, including the proto-oncogene c-Raf (also known as RAF1). In an in vivo imaging model of SCLC multiple-organ metastasis with the human SCLC cell line SBC-5, treatment with 17-DMAG remarkably inhibited the formation of metastatic sites in the liver, but was ineffective in hindering the progression of bone lesions. The latter was likely the result of activation of osteoclasts. IGF-1, which is supposed to be rich in bone environment, preserved c-Raf expression and maintained viability of SBC-5 cells treated with 17-DMAG. Furthermore, the combined use of a bisphosphonate with 17-DMAG significantly attenuated the progression of metastases in both the liver and the bone. These findings suggest that therapeutic effects of HSP90 inhibitors may be organ-specific and should be carefully monitored in SCLC clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call