Abstract

Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically.

Highlights

  • Breast cancer brain metastasis is a growing public health concern as advances in systemic therapy have helped to contain metastatic growth in most organs except the brain [1]

  • We subjected parental MDA-MB-231 cells from two labs, mammary fat pad tumor derived cell line (TMD-231), lung metastasis (LMD-231), bone metastasis (BMD-231), adrenal metastasis (ADMD-231), and brain metastasis (231-BR) to microarray mRNA expression analysis

  • Among the other six genes (CTCF, DUSP1, GALC, HIST1HIC, LEF1, and PCDH7), we found upregulation of DUSP1 and GALC in all metastatic cells compared with parental cells, irrespective of sites of metastasis

Read more

Summary

Introduction

Breast cancer brain metastasis is a growing public health concern as advances in systemic therapy have helped to contain metastatic growth in most organs except the brain [1]. The second is that mutations and/or epigenetic changes in cancer cells bestow blood-brain-barrier (BBB) permeability and brain metastasis. The Biology of Brain Metastasis Workshop organized by the National Cancer Institute (NCI) has set several research priorities with respect to biology of brain metastasis [17]. These include investigations into the pathogenic mechanisms of metastasis to brain, identification of commonalities and uniqueness of brain metastasis versus other sites of metastasis, differentiation of indolent and aggressive lesions by understanding heterogeneity among different brain metastatic lesions, investigation of the relationship between “stem cell” features and brain metastasis, and understanding the mechanisms responsible for tumor cell homing to the brain

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.