Abstract

BackgroundORFV attenuated live vaccines have been the main prophylactic measure against contagious ecthyma in sheep and goats in the last decades, which play an important role in preventing the outbreak of the disease. However, the available vaccines do not induce lasting immunity in sheep and goats. On the other hand, variation in the terminal genome of Orf virus vaccine strains during cell culture adaptation may affect the efficacy of a vaccine. Currently, there are no more effective antiviral treatments available for contagious ecthyma.ResultsWe constructed three eukaryotic expression vectors pcDNA3.1-ORFV011, pcDNA3.1-ORFV059 and pcDNA3.1-ORFV011/ORFV059 and tested their immunogenicity in mouse model. High level expression of the recombinant proteins ORFV011, ORFV059 and ORFV011/ORFV059 was confirmed by western blotting analysis and indirect fluorescence antibody (IFA) tests. The ORFV-specific antibody titers and serum IgG1/IgG2a titers, the proliferation of lymphocytes and ORFV-specific cytokines (IL-2, IL-4, IL-6, IFN-γ, and TNF-α) were examined to evaluate the immune responses of the vaccinated mice. We found that mice inoculated with pcDNA3.1-ORFV 011/ORFV059 had significantly stronger immunological responses than those inoculated with pcDNA3.1-ORFV011, pcDNA3.1-ORFV059, or pcDNA3.1-ORFV011 plus pcDNA3.1-ORFV059. Compared to other vaccine plasmids immunized groups, pcDNA3.1-ORFV011/ORFV059 immunized group enhances immunogenicity.ConclusionsWe concluded that DNA vaccine pcDNA3.1-ORFV011/ORFV059 expressing ORFV011 and ORFV059 chemeric-proteins can significantly improve the potency of DNA vaccination and could be served as more effective and safe approach for new vaccines against ORFV.

Highlights

  • Orf virus (ORFV) attenuated live vaccines have been the main prophylactic measure against contagious ecthyma in sheep and goats in the last decades, which play an important role in preventing the outbreak of the disease

  • ORFV059 vaccine plasmids expressing ORFV011 protein, ORFV 059 protein and ORFV011/ORFV059 chimeric-proteins in vitro, the pcDNA3.1-ORFV 011, pcDNA3.1-ORFV059 and pcDNA3.1-ORFV011/ ORFV059 recombinant vaccine plasmids-transfected ovine fetal turbinate (OFTu) cell lysates were analyzed by SDS-PAGE and Western blot, respectively

  • Western blot analysis revealed that ORFV011 protein, ORFV059 protein and ORFV011/ORFV059 chimeric- proteins bands could be detected in pcDNA3.1-ORFV011, pcDNA3.1-ORFV059 and pcDNA3.1-ORFV011/ORFV059 recombinant vaccine plasmids-transfected OFTu cell lysates (Figure 1, Lanes 2, 4, 6), but no corresponding protein bands were detected in the pcDNA3.1(+)-transfected cell lysates (Figure 1, Lanes 1, 3, 5)

Read more

Summary

Introduction

ORFV attenuated live vaccines have been the main prophylactic measure against contagious ecthyma in sheep and goats in the last decades, which play an important role in preventing the outbreak of the disease. The available vaccines do not induce lasting immunity in sheep and goats. Orf virus (ORFV) is the prototype species of the Parapoxvirus genus, which causes contagious ecthyma in sheep and goats. The disease is known as Orf, contagious pustular dermatitis, infectious labial dermatitis, scabby mouth, and sore mouth. The disease, which is distributed worldwide and endemic in most sheep and/ or goat-raising countries, is characterized by proliferative and self-limiting lesions around the muzzle and lips (scabby mouth) of infected animals, and sometimes affects the gums and tongue, especially in young lambs [1,2]. This, in turn, has an economic impact on sheep farmers due to the accompanying decreases in production

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.