Abstract

Orexin-A/B modulates multiple physical functions by activating their receptors (OX1R and OX2R), but its effects in the spinal cord motor control remain unknown. Using acute separation (by digestive enzyme) of cells and patch-clamp recordings, we aimed to investigate the effect and mechanisms of orexin-A on the glycine receptors in the spinal cord ventral horn neurons. Orexin-A potentiated the glycine currents by activating OX1R. In Ca2+-free extracellular solution, orexin-A still increased the glycine currents. While, the orexin-A-induced potentiation was blocked when Ca2+ was chelated by internal infusion of BAPTA, and the orexin-A effect was abolished by the IP3 receptor antagonists heparin and Xe-C. The PKC inhibitor Bis-IV nullified the orexin-A effect. In addition, orexin-A did not cause a further enhancement of the glycine currents after bath application of the PKC activator PMA. In conclusion, after OX1R is activated, a distinct IP3/Ca2+-dependent PKC signaling pathway, is likely responsible for the orexin-A potentiation on glycine currents in the spinal cord ventral horn neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call