Abstract

The nucleus tractus solitarius (NTS) plays central roles in a number of autonomic functions including cardiovascular control. Orexin (ORX)-A is a 33-amino-acid peptide implicated in the central regulation of energy metabolism, sleep, and the cardiovascular system. Studies demonstrate the presence of ORX-immunoreactive axons and both OX(1)R (orexin receptor) and OX(2)R mRNA within NTS. In this study, whole cell patch-clamp recordings were obtained from NTS neurons in rat medullary slices. Current-clamp studies showed that bath application of various concentrations of ORX-A depolarized 90.7% (78 of 86) of neurons tested while the remaining cells were either unaffected or showed small hyperpolarizations in response to peptide administration. Depolarizing effects were maintained in the presence of 5 microM TTX, and were concentration dependent. Using voltage-clamp techniques, we also identified modulatory actions of ORX-A on specific ion channels. Our results demonstrate that not only does ORX-A inhibit a specific potassium conductance (the sustained K(+) current) in NTS neurons, but it also activates a nonselective cationic conductance (NSCC). These data suggest that ORX-A effects on central cardiovascular control may result from direct actions on NTS neurons and also highlight the ability of this peptide to influence neuronal excitability as a consequence of concurrent modulation of multiple ion channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.